

Math 429 - Exercise Sheet 2

1. Prove (at least for matrix groups) that the exponential

$$\mathfrak{g} \rightarrow G, \quad X \rightarrow \exp(X)$$

is invariant under the adjoint action, i.e.

$$\exp(gXg^{-1}) = g \exp(X)g^{-1} \quad (1)$$

for any $X \in \mathfrak{gl}_n$ and $g \in GL_n$.

2. Then prove for any Lie group G that the abstractly defined exponential $\exp(X) = \gamma_X(1)$ satisfies

$$\exp(\text{Ad}_g(X)) = \text{Ad}_g(\exp(X)) \quad (2)$$

for any $g \in G$, $X \in \mathfrak{g}$.

3. Let $F : G \rightarrow G'$ be a Lie group homomorphism, and $f = F_* : \mathfrak{g} \rightarrow \mathfrak{g}'$ the induced linear map of tangent spaces. Show that we have

$$\boxed{\exp(f(X)) = F(\exp(X))} \quad (3)$$

for all $X \in \mathfrak{g}$. Conclude that f preserves the Lie bracket we defined last week

$$[X, X'] = \frac{\partial}{\partial t} \frac{\partial}{\partial t'} \exp(tX) \exp(t'X') \exp(tX)^{-1} \exp(t'X')^{-1} \Big|_{t=t'=0} \quad (4)$$

in the sense that

$$\boxed{f([X, X']) = [f(X), f(X')]} \quad (5)$$

for all $X, X' \in \mathfrak{g}$.

4. Consider the adjoint representation $G \rightarrow GL(\mathfrak{g})$ and take its derivative

$$\mathfrak{g} \rightarrow \text{End}(\mathfrak{g}), \quad \text{ad}_X : \mathfrak{g} \rightarrow \mathfrak{g} \quad (6)$$

for all $X \in \mathfrak{g}$. Then show that the Lie bracket (4) satisfies

$$[X, X'] = \text{ad}_X(X') \quad (7)$$

for all $X, X' \in \mathfrak{g}$.

5. The following famous result of Baker-Campbell-Hausdorff shows how to reconstruct the multiplication in a Lie group G from the Lie bracket of $\text{Lie}(G)$, at least in a neighborhood of the identity element.

Theorem 1. If G is a Lie group, and $X, Y \in \text{Lie}(G)$ are close enough to 0, then

$$\exp(X) \exp(Y) = \exp \left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sum_{\substack{a_1, \dots, a_n \geq 0 \\ b_1, \dots, b_n \geq 0}} \frac{[X, \dots, [X, [Y, \dots, [Y, \dots, [X, \dots, [X, [Y, \dots, Y] \dots]]]]]}{(a_1 + \dots + a_n + b_1 + \dots + b_n) a_1! \dots a_n! b_1! \dots b_n!} \right) \quad (8)$$

where the inner sum involves the iterated Lie bracket of a_1 copies of X , followed by b_1 copies of Y , \dots , followed by a_n copies of X , followed by b_n copies of Y .

Reverse engineer formula (8) as follows: suppose you're working in $G = GL_n$ and you want to find Z such that $\exp(X) \exp(Y) = \exp(Z)$, and Z is given by linear combinations of commutators of X and Y . Find the parts of Z which are linear, then quadratic, then cubic \dots in X, Y (do so explicitly up to whatever order you can).

6. If the Baker-Campbell-Hausdorff formula was too much fun for you, then consider the following formula due to Campbell If G is a Lie group, and $X, Y \in \text{Lie}(G)$ are close enough to 0, then

$$\text{Ad}_{\exp(X)}(Y) = Y + [X, Y] + \frac{[X, [X, Y]]}{2!} + \frac{[X, [X, [X, Y]]]}{3!} + \dots$$

and prove it for $G = GL_n$.